Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
J Med Virol ; 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: covidwho-2231450

RESUMEN

Accumulating evidence suggests that SARS-CoV-2 impairs the adaptive immune system during acute infection. Still, it remains largely unclear whether the frequency and functions of T and B cells return to normal after the recovery of COVID-19. Here, we analyzed immune repertoires and SARS-CoV-2-specific neutralization antibodies in a prospective cohort of 40 COVID-19 survivors with a six-month follow-up after hospital discharge. Immune repertoire sequencing revealed abnormal T- and B-cell expression and function with large TCR/BCR clones, decreased diversity, abnormal class switch recombination and somatic hypermutation. A decreased number of B cells but an increased proportion of CD19+ CD138+ B cells were found in COVID-19 survivors. The proportion of CD4+ T cells, especially circulating follicular helper T (cTfh) cells, was increased, whereas the frequency of CD3+ CD4- T cells was decreased. SARS-CoV-2-specific neutralization IgG and IgM antibodies were identified in all survivors, especially those recorded with severe COVID-19 who showed a higher inhibition rate of neutralization antibodies. All severe cases complained of more than one COVID-19 sequelae after 6 months of recovery. Overall, our findings indicate that SARS-CoV-2-specific antibodies remain detectable even after 6 months of recovery. Because of their abnormal adaptive immune system with a low number of CD3+ CD4- T cells and high susceptibility to infections, COVID-19 patients might need more time and medical care to fully recover from immune abnormalities and tissue damage. This article is protected by copyright. All rights reserved.

2.
Immun Ageing ; 19(1): 12, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1724508

RESUMEN

BACKGROUND: COVID-19 patients may experience "cytokine storm" when human immune system produces excessive cytokines/chemokines. However, it remains unclear whether early responses of inflammatory cytokines would lead to high or low titers of anti-SARS-CoV-2 antibodies. METHODS: This retrospective study enrolled a cohort of 272 hospitalized patients with laboratory-confirmed SARS-CoV-2. Laboratory assessments of serum cytokines (IL-2R, IL-6, IL-8, IL-10, TNF-α), anti-SARS-CoV-2 IgG/IgM antibodies, and peripheral blood biomarkers were conducted during hospitalization. RESULTS: At hospital admission, 36.4% patients were severely ill, 51.5% patients were ≥ 65 years, and 60.3% patients had comorbidities. Higher levels of IL-2R and IL-6 were observed in older patients (≥65 years). Significant differences of IL-2R (week 2 to week ≥5 from symptom onset), IL-6 (week 1 to week ≥5), IL-8 (week 2 to week ≥5), and IL-10 (week 1 to week 3) were observed between moderately-ill and severely ill patients. Anti-SARS-CoV-2 IgG titers were significantly higher in severely ill patients than in moderately ill patients, but such difference was not observed for IgM. High titers of early-stage IL-6, IL-8, and TNF-α (≤2 weeks after symptom onset) were positively correlated with high titers of late-stage IgG (≥5 weeks after symptom onset). Deaths were mostly observed in severely ill older patients (45.9%). Survival analyses revealed risk factors of patient age, baseline COVID-19 severity, and baseline IL-6 that affected survival time, especially in severely ill older patients. CONCLUSION: Early responses of elevated cytokines such as IL-6 reflect the active immune responses, leading to high titers of IgG antibodies against COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA